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Encoding information in chemical chaos by controlling symbolic dynamics
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In this paper we describe a technique of encoding and then decoding symbol sequences containing infor-
mation into chaotic oscillations of the Belousov-Zhabotinsky reaction. The encoding technique is based on
controlling the chaotic oscillations by applying small parameter perturbations and on learning the grammar of
corresponding symbol dynamics produced by the free-running chaotic system. The use of small parameter
perturbations requires that we respect the grammar of the symbol dynamics which represents the physical
dynamical system. We present a method for learning the grammar of a symbol dynamics in terms of allowed
transitions between the bins defined by the symbol generating partition. The encoding technique can be easily
utilized for targeting and stabilization of any unstable periodic orbit.@S1063-651X~97!10904-7#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

A great deal of recent research in applied and theoret
dynamical systems has been focused on taking advantag
the fact that a chaotic dynamical system can be control
The sensitive dependence characteristic of chaos is act
advantageous to building a highly agile control system
which a small deliberate perturbation can have a large
sponse. A chaotic attractor can be considered as an unlim
reservoir of periodic behavior. Ott, Grebogi, and Yorke
troduced the OGY method@1# to stabilize an unstable perio
orbit embedded in a chaotic attractor. This original id
opened the field of controlling chaos. OGY uses a local
ear feedback control loop by targeting the stable manifold
an unstable fixed point through small parameter variatio
Ergodicity causes an arbitrary initial condition to eventua
wander close enough to the fixed point that the tiny para
eter variations are sufficient to capture the orbit. When
godicity does not cause the arbitrary initial condition to wa
der close and fast enough to the unstable fixed point,
‘‘butterfly effect’’ allows us to steer trajectories to targe
with only small perturbations@2#; this is called ‘‘targeting.’’

Controlling chaos has provided many exciting interdis
plinary applications, including control of lasers, magne
elastic materials, living heart tissue, and interplanet
travel. Of particular relevance to this paper, Petrovet al.
@3,4# have experimentally demonstrated the OGY method
control chemical chaos. They applied a map-bas
proportional-feedback algorithm to stabilize periodic beh
ior of the Belousov-Zhabotinsky~BZ! reaction in its chaotic
regime.

The link between symbol dynamics and a physical d
namical system is well established@5# as a descriptive tool
The link can be thought of as a change of coordinates
which properties of the dynamics are preserved. The
also implies a justification for many of the information the
retic tools used in characterizing chaos, including topolog
entropy and Markov partitions@6–8#. Corresponding to a
physical trajectory, there exists an infinite symbol sequen
551063-651X/97/55~6!/6404~10!/$10.00
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Whether or not the link is realized, the existence of the sy
bol dynamical description implies that controlling a traje
tory of the physical dynamical system is equivalent to co
trolling a symbol sequence. Recently, Hayeset al. @9,10#
demonstrated, numerically and experimentally, that the c
nection between information theory and chaotic systems
be used to encode a message into a chaotic electronic ci
by controlling the symbol dynamics throughsmallperturba-
tions.

In this paper, we demonstrate, by numerical experime
the possibility that information can be encoded into the c
otic oscillations of the BZ reaction. There exists a possibil
that biological systems might hold and control informati
flow in the oscillations of their defining dynamical system
However, a main technical problem of encoding is learn
the grammar of the corresponding physical dynamical s
tem. We present a practical grammar learning algorithm,
then we encode and decode information in the form of bin
sequences. The algorithm is generally applicable to ot
systems.

In Sec. II we present the Gyo¨rgyi-Field @12# model of the
BZ reaction. In Sec. III we review the theoretical backgrou
for a symbol dynamics description of a map in physical c
ordinates, and then we present our technique to learn
grammar in terms of all permitted transitions between
bins defined by the generating partition. In Sec. IV, given
rules of the grammar, we present the technique of encod
and then decoding information in chaotic oscillations by u
ing the form of the grammar defined in Sec. III. The fact th
complete control of symbol dynamics implies comple
course-grained control ofall possible orbits of the physica
dynamical system is noted in Sec. V, which discusses tar
ing. The technical issues concerning how to achieve a
quired small variation of the map on the surface of the s
tion and thus transmit a desired bit is described in Sec. VI
Sec. VII we present the numerical experiments in which
encode a short message, and we also target simple uns
periodic orbits. We conclude with an assessment of the te
nique and its potential applications.
6404 © 1997 The American Physical Society
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II. THE MODEL

In this paper we employ the most studied chaotic che
cal system—the BZ reaction in a continuous-flow stirre
tank reactor~CSTR!. We use the Gyo¨rgyi-Field @12# model
of the BZ reaction:

dX

dt
52k1HXY1k2AH

2Y22k3X
2

10.5@k4~HA!1.5~C2Z!X0.52k5XZ#1ko~Xo2X!,

~1!

dZ

dt
5k4~HA!1.5~C2Z!X0.52k5XZ2ak6VZ2bk7BZ

1ko~Zo2Z!, ~2!

dV

dt
52k1HXY1k2AH

2Y1k3X
22ak6VZ1ko~Vo2V!,

~3!

where

Y5
ak6ZV

k1HX1k2AH
21ko

~4!

and the variableX denotes the concentration of HBrO2, and
Z denotes the concentration of Ce41, V the concentration of
bromomalonic acid, andY the concentration of Br2. The
concentrations of these species in the inflow stream are
noted with subscripto. The parameterA represents the con
centration of HBrO3, B is the concentration of malonic acid
and C is the total concentration of catalys
C5@Ce41#1@Ce41#. Kinetic parameters are denoteda and
b @12#, andk1–k6 are rate constants. In our study we allo
small variations of the adjustable control parameterko ,
which denotes the flow rate.

The values of the rate constants and fixed parameters
in our simulations are given in Table I. Gyo¨rgyi and Field

TABLE I. Parameters used in the simulations.

Parameter Value

k1 43106 dm6 mol22 s21

k2 2 dm6 mol22 s21

k3 33103 dm3 mol21 s21

k4 55.2 dm7.5 mol22.5 s21

k5 73103 dm3 mol21 s21

k6 0.09 dm3 mol21 s21

k7 0.23 dm3 mol21 s21

a 600/9
b 8/23
A 0.1 mol dm23

B 0.25 mol dm23

H 0.26 mol dm23

C 8.3331024 mol dm23

Xo 0 mol dm23

Zo 0 mol dm23

Vo 0 mol dm23
i-
-

e-

ed

@12# showed that the model displays chaos both at high
low flow rates. In this paper we choose the low flow ra
chaotic region to demonstrate the encoding procedure. L
flow rate chaos is found for flow rates in the vicinity o
ko53.531024 s21 for parameters from Table I~see the bi-
furcation diagram, Fig. 1 in Ref.@12#!. The same mode
@Eqs. ~1!–~4!# and similar parametric conditions have be
previously used by Petrovet al. @3# to demonstrate the OGY
method of chaos control.

Equations~1!–~4! are stiff ODE’s and we use a modifie
semi-implicit Runge-Kutta type fourth order method with a
tomatic step length control for numerical integration.

III. LEARNING THE GRAMMAR
OF THE SYMBOLIC DYNAMICS

Consider the one-dimensional map

xn115 f l~xn!, ~5!

derived from the flow by the Poincare´ section. We use a
special case of Poincare´ section—maxima ofZ, which can
be easily determined in experiments. The adjustable par
eter used for control, the flow rateko , is written here asl.
The map corresponding to the nominal parameter va
l053.531024 s21 is shown in Fig. 1. The link between
chaotic evolution of phase space trajectories in Eq.~5! and
orbits of the Bernoulli shift map on symbol space is w
established@5#.

In the case of a one-hump map, wheref l(x) has a single
interior maximum or minimum, a two-character symb
spaceS is sufficient to describe the dynamics of Eq.~5!.
Given a decision pointd, in the range off l , a phase space
trajectory, starting at the initial conditionx0, corresponds to
a symbol sequence as follows:

FIG. 1. The one-dimensional mapf l(x) derived from the three-
dimensional flow on the surface of the section corresponding to
nominal parameter valuel053.531024 s21. The discrete set con
sisting of many successive piercings of the section can be use
approximate an arbitraryf l(x) for a pointx not in the data set by
using a spline fit of the data to represent the map. The techniqu
equally accessible to experimental data using delay coordinate
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s i5H 0 if xiPL, whereL5@xmin ,d#

1 if xiPR, whereR5~d,xmax#.
~6!

A symbol sequence$s i% i50
` may be written

s5s0 .s1s2s3•••, ~7!

which can be thought of as a pointsPS, whereS is the
space of all possible two-character, one-sided symbol
quences. Alternatively, the symbol points, corresponding to
an initial conditionx0, can be thought of as the itinerary o
successive left-right positions of the trajectory relative to
decision pointd.

The Bernoulli shift maps:S→S is defined

s~s!5s~s0 .s1s2s3••• !5s1 .s2s3s4•••. ~8!

As the decimal is shifted to the right one symbol, the le
most symbol is forgotten, as a new symbol is brought i
focus. Bringing new symbols into ‘‘focus’’ is equivalent t
creating information, which we control by small parame
perturbations,dl. The expression ‘‘in focus’’ describes mea
surement accuracy, which is made rigorous by equipping
symbol spaceS with the following norm:

isi5(
i

s i

2i
. ~9!

The shift map on the full symbol space,s:S→S, defines
the fullshift. However, given an arbitrary mapf l , not
all symbol sequences correspond to the trajectory of
initial condition x0. Restricting the shift map to a subs
of S consisting of all the itineraries that are generated
Eq. ~6! yields thesubshiftS ( fl ,d)

,S. The location of the

decision pointdP@xmin ,xmax# effects the set of admissibl
symbol sequences. For example, ifd is chosen far to the
right, symbol sequences tend to consist mostly of ‘‘0’s.’’ W
choosed as the interior maximum point, which maximize
the topological entropy of the resulting subshift@6#.

Equipped with the topology induced by the symbol spa
norm, the dynamics of the subshiftsuS( fl ,d) is semiconjugate
to the dynamics of the map,f luL in Eq. ~5!, restricted to its
invariant setL,@xmin ,xmax#. Therefore, trajectories corre
spond to digital symbolic codes, which can be controlled
parameter perturbations. Since we wish to use only sm
parameter perturbations,dl, the goal is to work within the
existing dynamics, rather than to create new dynamics w
large or rude parameter variations. Therefore, we will wo
within the existing grammatical limitations of the subsh
corresponding tof l0

, for the chosen nominal paramet

valuel0.
The one-hump mapf l is not uniformly hyperbolic; spe-

cifically, the zero slope at the critical pointd, chosen as the
maximum, corresponds to nonhyperbolicity ford and its or-
bit. The partition defines bins, corresponding ton-bit words.
The bins are generated by the sequence of inverse im
$d, f21(d), f22(d), . . . ,f2(n21)(d)%, when these inverse
exist @6#. When the map is not everywhere two onto on
some f2 i(d) will not exist, corresponding to illegali -bit
words. A one-hump map is Kupka-Smale complete if it
onto the interval, and for such a map, all possible sub
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quences correspond to orbits of the map@5#. We can see tha
the attractor displayed in Fig. 1 folds the interv
@xmin ,xmax# over itself less than exactly twice.

Learning the grammar of the subshift is a nontrivial tas
consisting of finding all the forbiddenn-bit words, which are
n-symbol sequence combinations. In general, the subs
may not be of finite type; the grammar may not consist o
finite list of n-bit forbidden words for any finiten. However,
for our purposes, we do not need the full grammar; a fin
approximation will suffice.

With a computer, the goal is to learn ann-bit approxima-
tion to the grammar, forxP@xmin ,xmax# on a grid. The
grid points need to be fine enough to capture the nat
partition generated by the bins, with mean size of ord
22n(xmax2xmin). With this in mind, the bit lengthn should
be chosen proportionally to the minimum expe
mental resolutiondlmin , approximated according todxs
>maxxP[xmin ,xmax]

] f l /]lu(l0 ,x)dlmin , wheredxs is the size

of the smallestn-bit bin. In practice, the simple rule o
thumb is that a largern-bit word size causes smaller corre
sponding bin sizes in the phase space, and this requir
higher resolution both in measurements of the phase vari
x and in parameter control. So, choosingn too large may
require perturbations or measurements beyond the accu
of the experiment. The payoff is that smaller perturbation
required to encode the message for largern. In the numerical
experiment, described in Sec. VII, we letn54 correspond-
ing to a total of 2n516 possible words, and we us
N51000 evenly spaced grid points.

For each grid pointyj , a symbolic itinerary is generate
according to Eq.~6!, creating an explicit correspondenc
s5r (x), where r :@xmin ,xmax#→S. Figure 2 displays the
norm of these itineraries as a function ofx using Eq.~9!. Due
to the continual refolding of the interval into itself, the fun
tion is not monotonic. It is more useful to use the gray-co
ordering according to the following formulas, which can
found in Cvitanovicet al. @7#. Givens i from Eq. ~6!, define

ck5S (
i51

k

s i D ~mod2! ~10!

and

FIG. 2. The normir (x)i as a function ofx.
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g50.c1c2•••5 (
k51

`

ck2
2k. ~11!

The order ofg is the same as the ordering on the interv
@xmin ,xmax#, which causes the monotonic nondecreasing
ture of theg(x) function, in Fig. 3. By the natural orderin
of the gray-code,g(x)P@gmin ,gmax#, wheregmin5g(xmin)
andgmax5g(xmax). Thus the grammar must have limitation
since the functiong(x) does not pass through the origin,
seen in Fig. 3. Therefore, anyn-bit symbol sequence, corre
sponding to a gray-codeg, such thatg,gmin , does not cor-
respond to a trajectory off l .

We describe here a method of learning ann-bit approxi-
mation to the full grammar. The goal is to catalogue all
then-bit words, and transitions between these words, wh
are observed among the itineraries of the grid points. T
can be decided by a single pass, yes or no, flagging algor
for eachn-bit word. Then-bit approximation to the gramma
can be visualized as a 2n node directed graph~see Fig. 4!.
Each node represents onen-bit word, and each node ca
have at most two arrows leading into it and two arrows le
ing out of it, corresponding to the choice of shifting in a ‘‘0
or a ‘‘1.’’ The n-bit approximation to the grammar is equiv
lent to a 2n32n transition matrixA, where an allowed tran
sition from nodej to nodei is denoted byAi , j51, and the
disallowed transition is denoted byAi , j50. However,A is
necessarily sparse, and requires at most 2n computer checks
against the grid to decide if the transition occurs, and at m
a 23n array for storage. The topological entropy, calcula
as the natural logarithm of the largest eigenvalue of the c
responding transition matrix@8#, is equal toh5 ln2 for the
maximal case representing ann-bit approximation of the
fullshift grammar.

For an arbitrary grammar, there will tend to be forbidd
n-bit words. Hence, the corresponding node is forbidd
which also erases the arrows both leading into and out of
node. Thus, in terms of the transition matrix representat

FIG. 3. The monotonic nondecreasingg(x) function due to the
gray-ordered symbolic codes. Note that since no symbolic code
have a valueg.g(xmax), the gray-ordered value of the maximu
of the map, a hole must be removed from the function. Likew
removing all preimages removes a Cantor set.
l
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erasing thei th node requires that thei th row and column are
effectively erased fromA. The topological entropy is less
than the maximal value, ln2, corresponding to diminished
information carrying capacity. For example, Fig. 4~b! depicts
a directed graph in which the 3-bit word ‘‘000,’’ three zeros
in a row, is forbidden. Hence, the forbidden words include
‘‘0000,’’ ‘‘0001,’’ and ‘‘1000.’’ These are all the 4-bit
words, which include ‘‘000.’’

It follows that from the node ‘‘0100,’’ there is no choice
in what node can follow. In 4-bit accuracy ,‘‘1001’’must
follow by requirement of the grammar. In terms of the shift
map

s~0.100••• !51.001•••, ~12!

written to 4-bit accuracy. At this node, only the single tran-
sition, shifting in a ‘‘1,’’ can occur, and hence there is no
information carrying capacity at the ‘‘0100’’ node.

In contrast, the node ‘‘0010’’ ends with ‘‘10’’ and does
not have the possibility of a transition to the forbidden
‘‘000’’ sequence in one application of the shift map. Hence
‘‘0010’’ is an information bearing node; there are two arrows
leading out of ‘‘0010,’’ one to ‘‘0100,’’ and one to ‘‘0101.’’
In terms of the shift map,

s~0.010••• !50.100••• or 0.101••• ~13!

is permitted by the grammar. The directed graph, or equiva
lently the transition matrix, represents then-bit approxima-
tion of the grammar, which consists of all the allowed tran-

an

e

FIG. 4. ~a! The fullshift grammar~no words are forbidden! on
the two symbols ‘‘0’’ and ‘‘1’’; all permutations of two symbols,
four at a time, and all possible Bernoulli-shifts, to 4-bit word accu-
racy. The only restriction on transitions is that one application o
the Bernoulli shift map can only shift in a ‘‘0’’ or a ‘‘1’’ in a single
iteration. Thus, there are two arrows into and out of each node.~b!
A subshift which is of finite type and can be represented by th
forbidden word ‘‘000’’ requires that all nodes representing words
with three ‘‘0’s’’ in a row must be canceled. To maintain the closed
and invariant property of the subshift, all arrows into and out of
these nodes must also be eliminated.~c! The resulting subshift has
a smaller directed graph. Some nodes, such as ‘‘0.100,’’ have n
information carrying capacity. At this node, only a ‘‘1’’ can be
shifted in; s(0.100)51.001 is the only possibility, because
s(0.100)51.000 is a forbidden word. Thus, node ‘‘0.100’’ is
‘‘dead,’’ and so the bandwidth is not full.
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sitions between all then-bit words. For a finite-type
grammar, there exists a finiten such that all forbidden words
are considered.

At this point, we have access to all possible transitio
the grammar is recorded as the transition matrix in comp
form by the 23n array of yesses or nos. We also have
itinerary at each grid pointyi . Thus, we know the grammar
and we know the code at each grid point. We still need
learn how to encode a desired bit at each grid point.

IV. ENCODING AND DECODING A MESSAGE

A. Encoding

The directed graph represents then-bit grammar of the
grid points in which a digital message can be encoded
cording to the following scheme. Suppose we wish to se
the message from Table II. Note the distinction between
n-bit register~node! and the 7-bitASCII codes. The message
in ASCII, is coded bit by bit into the dynamics as the tran
tions from information bearing nodes.

Starting at an arbitrary initial conditionx0, a simple
search locates the nearest grid pointyj . We associate tox0
the noder (yj ) @which we know as the course grainedn-bit
itinerary, r :@xmin ,xmax#→S according to Eq.~6!# corre-
sponding toyj , along with the node’s permitted transition
Throughout the on-the-fly control experiment, the orbit
x0 will be stabilized to grid points, for insurance of know
edge of the outcomes.

Examining the message in Table II. the first message b
a ‘‘1.’’ If the node corresponding toyj is information bear-
ing, then the ‘‘1’’ can be encoded. In this case, if the code
the natural image ofyj contains in the least significant pos
tion a ‘‘1’’ bit, which is the desired bit for encoding th
message, thenyj should be stabilized to its natura
image—to the grid pointyj8 closest tof l0

(yj ). If the natural

image of yj corresponds to encoding a ‘‘0’’ bit, then b
construction there exists a nearby grid pointyk such that the

TABLE II. The encoded message.

ASCII

Character Decimal Binary

C 67 1000011
h 104 1101000
a 97 1100001
o 111 1101111
s 115 1110011

32 0100000
i 105 1101001
s 115 1110011

32 0100000
u 117 1110101
s 115 1110011
e 101 1100101
f 102 1100110
u 117 1110101
l 108 1101100
! 33 0100001
;
ct
n

o

c-
d
e

-

f

is

f

grid point yk8 closest tof l0
(yk) corresponds to bearing th

opposite of the natural bit—a ‘‘1’’ bit. Sinceyk can be found
nearbyyj , a small parameter perturbationcan be used to
stabilizex0 to the grid pointyk8 nearestf l0

(yk).

Alternatively, if the node corresponding toyj is not mes-
sage bearing,yj must be stabilized to the grid pointyj8 clos-
est to the natural image, without bearing the desired
Nonbearing transitions through the directed graph, must
made whenever a nonbearing node is visited. A nonbea
node is defined as a node which has only one leaving arr
corresponding to no choice, and therefore no informat
carrying capacity. The larger the number of nonbear
nodes, the slower the transmission rate, often called a s
bandwidth. The transmission rate, or information carryi
capacity of the directed graph, is measured by the topolo
cal entropy function.

Each grid pointyj has one fixed code, mapped to th
n-bit coder (yj ), and therefore there is a closestyi such that
r „f l0

(yi)… has a ‘‘0’’ as the least significant digit, if shifting

in a ‘‘0’’ from node r (yj ) is permitted by the grammar
Likewise, there is a closestyk such thatr „f l0

(yk)… has a ‘‘1’’
as the least significant digit, if permitted by the gramm
Thus, it is possible to preprocess the grid. Before any con
is done experimentally, we precalculate and record the c
est point to grid pointyj which shifts in a ‘‘0,’’ and the
closest point which shifts in a ‘‘1.’’ Thus the grammar
each grid point can be prerecorded, and all the best targe
all the grid points can be stored in a 23N array, for anN
point grid. A huge advantage of prerecording is the spe
and simplicity for ‘‘on-the-fly control’’ of an experimenta
orbit of x0; this only requires association ofxt , at timet, to
its nearest grid pointyj , and then targetingyj ’s prerecorded
target on the grid which transmits the desired bit, at a m
mal energy cost. All pertinent data can be stored in a 33N
array, where the entries of the array can be arranged as
lows.

~i! The first column,yj ,1 , records the code and/or itinerar
of the grid point,r (yj ). Note that forbiddenn-bit words will
never appear on this list.

~ii ! The second column,yj ,2 , contains the grid number o
the closest grid pointyi8 to the natural imagef l0

(yj ), which

shifts in a zero.yi8 represents the target whose coder (yi8)
has a ‘‘0’’ as the least significant digit and it is the grid poi
which shifts in the ‘‘0,’’ while requiring the smallest param
eter perturbation. If shifting a ‘‘0’’ into then-bit window is
not allowed by the grammar, we record a21 in this posi-
tion. It is necessary to transmit a nonmessage bearing bu
bit ‘‘1.’’

~iii ! The third column,yj ,3 , contains the grid number o
yk8, the closest grid point to the natural imagef l0

(yj ) which

shifts in a 1. If shifting a ‘‘1’’ into then-bit window is not
allowed, we record a21 in this position. It is necessary t
transmit a nonmessage bearing ‘‘0.’’

Whenever bothyj ,2.0 andyj ,3.0, indicatingr (yj ) is a
message bearing node, the desired bit is transmitted, an
the next iterate, the next bit of the message is considere
yj ,2,0 or yj ,3,0, then a nonmessage bearing bit~a ‘‘buffer
bit’’ ! is sent, and on the next iterate, the same message
again attempted for transmission. It never happens that b
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yj ,2,0 andyj ,3,0; this indicates a forbiddenn-bit word and
as mentioned above such a word never appears on the li
observedorbits.

B. Decoding

There are two alternative methods by which the control
time-series signal can be translated back into the orig
message. Both techniques require translation of the ti
series into the sequence ofn-bit nodes visited, that is, the
path through the directed graph. The first method requ
that the receiver also has access to all the tools used by
encoder and/or controller. Given the full grid of pointsyj and
their corresponding symbolic coder (yj ), the experimental
time series can be translated to the sequence ofn-bit nodes
visited, by associating the nearest grid pointsyj to the time
seriesxt at each timet.

The second method is related to the first in that we in
pret transitions through the directed graph, except we do
require that the decoder has access to the originalN point
grid approximating the functionr (x). The alternative and
more realistic idea is to read the itinerary directly from t
controlled time seriesxt , by comparison ofxt to the decision
pointd at each timet, according to Eq.~6!. This information
is easily translated into the sequence ofn-bit nodes visited
by considering a slidingn-bit block through the long itiner-
ary sequence corresponding toxt .

At this point, interpretation of the path through the d
rected graph into the digital message is the same for b
techniques above. We must strip off the ‘‘buffer bits’’ whic
were added during encryption. Given knowledge of perm
sible transitions through the 2n node directed graph, the se
quence of nodes actually visited can be translated into
encoded message by reading the transitionsonly from the
information bearing nodes. Just as was the case during e
cryption, the decoder reads the choice of shifting in a ‘‘0’’
a ‘‘1’’ in terms of the actual transitions away from
information-bearing nodes. However, the transitions aw
from nonbearing nodes must be ignored, effectively stripp
the buffer bits that the encoder was required to send.

Encoding a message requires the insertion of a bu
‘‘1’’ every time after two ‘‘0’s’’ have occurred. So to send
the message ‘‘0000,’’ it is necessary to send the b
‘‘001001’’ to avoid the illegal three bit word ‘‘000’’ ever
occurring in the 4-bit sliding block window. Encryption wit
buffer bits, for an arbitraryn-bit grammar, occurs automat
cally when encoding by use of the directed graph meth
The interpretation of the path through the directed graph
cryption described above automatically strips the buffer b
The method has the advantage that interpreting the gram
is all done automatically on the computer. This saves a la
part of the difficulty found in@9# of interpreting the gramma
of the dynamical system; it is never necessary to try
‘‘manually’’ deduce any fundamental word restrictions~such
as forbidding ‘‘000’’! and then to manually insert and the
strip buffer bits, on a case by case basis, to prevent the
bidden words. The list ofn-bit nodes and their allowed tran
sitions is sufficient for encodinganddecoding.

C. Noise

The encoding method can be made robust to noise
modeling errors. Errors to the time-seriesxt , due to noise,
of
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can cause misidentification of location ofxt relative to d
when uxt2du is small @11#. A ‘‘0’’ when xt,d may be in-
terpreted as ‘‘1’’ when a small error causes the read
xt.d. If noise volumedxn is possible, then it is necessary
avoid targeting the intervalI5@d2dxn ,d1dxn# and all pre-
iterates ofI , $I , f21(I ), f22(I ), . . . %, which defines the holes
of a Cantor set that are subtracted from the attractorL. Note
that as the noise gap is increased, the measure of the C
set decreases. Also, the restrictions on the grammar incre
and therefore the bandwidth decreases@14#. We did not for-
mally remove such a Cantor set in this work.

We use a pragmatic technique to prevent errors in con
from effecting the message. Interpreting the thre
dimensional flow as a one-dimensional map causes a s
error in predicted control response, which we discuss in
next section. If a small error causesxt , which was targeted a
yi 8, whose code isr (yi 8), to land aty, andr (y)Þr (yi8), then
there is a coding error. Ifyi8 is near the boundary]Si8 of the
connected setSi85$z:r (z)5r (yi8)%, the set of all points with
the same code as the desired target, then even a small ta
ing error will be prone to coding errors. The simple fix to th
problem is to avoid targeting points near the boundaries
code regions. Simply put, we define a buffering size
m-grid points, and we avoid targeting a point which is le
thanm points from the boundary of a code region. That
we add the following caveat when forming the prerecord
33N list of targets:yj ,2 lists the grid number of the optima
energy target, fromyj , to transmit a ‘‘0.’’ If yj ,2 is more than
m grid points from the boundary of its code region, then it
already noise error resistant. But ifyj ,2 is less thanm grid
points from the boundary, then we store instead the no
resistant and nearby point which is exactlym grid points
from the boundary, in the array locationyj ,2 . We similarly
alter the third column of the array,yj ,3 , of optimal energy
targets which shift in a ‘‘1,’’ by adding anm-grid buffer
region and therefore error resistance.

V. TARGETING

Knowledge of the symbol dynamics of a dynamical sy
tems, to ann-bit accuracy, is equivalent to a complete cour
grained knowledge of all possible orbits. Controlling th
symbol dynamics can also be used to quickly steer orbit
desired periodic states while using only small perturbatio
Targeting is surprisingly straightforward, given comple
knowledge of then-bit grammar.

Suppose we wish to target a fixed point. This can
achieved by identifying a legal repeating sequence of b
For example, we continue with the 3-bit example in whi
‘‘000’’ is forbidden. In this case, a legal repeating sequen
‘‘111111 . . . ’’ corresponds to the period-1 orbit on the attra
tor. In this example, it is not possible to target a period
point ‘‘00000 . . . ’’ by restriction that three ‘‘0’s’’ in a row
are forbidden. Figure 1 shows that the functionf l(x) inter-
sects the diagonalxi5xi11 only at x.d and there is no
intersection forx,d.

Similarly, if we wish to target a period-2 state, it is suffi
cient to feed any legal alternating two bit sequence, i
‘‘01010101 . . . .’’ Legal period-3 three sequences inclu
‘‘001001001 . . . ,’’ ‘‘110110110 . . . ,’’ etc.

Note that we never hit a periodic state exactly usi
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6410 55ERIK M. BOLLT AND MILOS DOLNIK
n-bit word accuracy. Rather, we produce an orbit which
stabilized around the periodic orbit by confining it to the bi
whose sizes are specified by then-bit word accuracy. This
can be made as accurate as justified by the minimum
sible experimental parameter perturbations. This limitation
not unique to the symbol dynamics method of targeting,
limits all methods of course-grained control. An analogy i
person’s ability to stabilize a stick in the upwards vertic
position. The limitation here is a person’s hand-eye reac
time, and minimal hand movement tolerances.

VI. CONTROL PERTURBATIONS

In this section, we discuss the calculation of parame
variations based purely on the assumption of a o
dimensional map. Then we include the complications wh
arise due to the true three-dimensional nature of the ph
space.

In terms of the map based description, given a des
displacementdxwant, the parameter variationdl can be cal-
culated by linearization of the map,f l . Suppose the curren
on-the-fly experimental value for phase point on the surf
of sections isx. We have determined by above conside
ations that we need to stabilize the iterate ofx to the grid
point yj . The uncontrolled iteration ofx is

x85 f l0
~x!. ~14!

Therefore, the desired displacement is

dxwant5yj2x8, ~15!

from which we can make the following linearization of th
map:

dxwant'
] f l

]l U
~l0 ,x!

dl. ~16!

Solving for the required parameter perturbation yields

dl5
dxwant

] f l

]l U~l0 ,x!

. ~17!

Parameter control requires knowledge of how the m
varies with respect to parameter variations. To calculate
one-dimensional map changes for a slightly perturbed
rameter value at least two separate data sets are required
at the nominal parameter valuel0, and one for a slightly
perturbed parameter valuel5l01e. Using the difference
quotient approximation,

] f l

]l
U ~l0 ,x!'

f l01e~x!2 f l0
~x!

e
, ~18!

the derivative can be calculated by comparison of the
spline fit maps~see Fig. 5!. We employ several both negativ
and positive values ofe and we use the least squares meth
at every grid point yi to approximate the derivative
] f l /]l. Squares in Fig. 6 correspond to the calculated v
s
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ues off l1e at the grid pointx58.006 489 8731026 and the
solid line represents the least squares fit.

Unfortunately, for our system, the derivative fro
Eq. ~18! cannot be used directly in Eq.~17! to estimate the
required parameter perturbation. Equation~17! requires that
the response to parameter variations occurs completely a
the surface of the section. In fact, the set of three OD
@Eqs. ~1!–~4!#, reduced to a one-dimensional map by t
Poincare´ method, displays transient effects of parameter p
turbations. Integration reveals that the very next intersec
with the Poincare´ surface after a parameter perturbation do
not correspond to a perturbed one-dimensional map, bu
the following intersections settle onto the perturbed map

To calculate the true response, on the Poincare´ surface,
we need to calculate the partial derivatives] f 1/]l at every
point of the nominal one-dimensional map by integrati
Eqs. ~1!–~4! to find the very next Poincare´ section for the
slightly perturbed parameter valuesl01e. Let f l01e

1 (x) be

FIG. 5. A spline fit model of the map for the nominal parame
value f l0

(x) as in Fig. 1, and a second spline fit of the m
f l01e(x) collected for the parameter variatione51.431026 s21,
l053.531024 s21.

FIG. 6. Dependence off l1e and f l1e
1 on e at grid point

x58.006 489 8731026 M. Squares and the solid line represe
f l1e ; dots and the dashed line representf l1e

1 .
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desired displacement and Eqs.~19! and~20! to calculate the
required perturbation at every iteration.
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the very next Poincare´ section after a parameter variation b
e. Then the approximation of] f 1/]l(x) is

] f l
1

]l
U ~l0 ,x!'

f l01e
1 ~x!2 f l0

~x!

e
. ~19!

We also employ several negative and positive val
of e and we use a least squares fit at each grid poinyi
to approximate the derivative] f l

1/]l. Figure 6 also dis-
plays the dependence off l1e

1 on e at the grid pointx5
8.006 489 8731026 and Fig. 7 contrasts the difference b
tween the partial derivatives] f /]l and] f 1/]l.

The required parameter perturbation is therefore equa

FIG. 7. Comparison between] f l /]l and] f l
1/]l. The approxi-

mate partial derivative] f l /]l calculated by Eq.~18!, under the
assumption of a truly one-dimensional map, and responses to
rameter variations occur entirely on the Poincare´ surface. The true
response] f l

1/]l variation is calculated by direct integration of th
differential equations, with a slightly perturbed parameter, for ini
conditions on the original map until the next surface piercing. T
nominal parameter valuel053.531024s21.
s

dl5
dxwant
] f l

1

]l
~x!

. ~20!

Another complication, as noted in@13#, arises from the
false assumption that system dependence on the parame
given byxn115 f (xn ,ln), which for a fixed parameter valu
gives rise to the one-dimensional map. In fact, the dep
dence we observe isxn115 f (xn ,ln ,ln21), due to rapid
contraction to a new perturbed one-dimensional map, but
fast enough during frequent parameter variations. Due to
three-dimensional nature of the flow, Eqs.~14!, ~15!, and
~20! give the correct estimate for the required parameter p
turbation only when the adjustable parameter is chan
from l0 to l01dl.

The control of symbol dynamics requires slight chang
to the adjustable parameter atevery iteration and therefore
there is no time to settle back onto the one-dimensional m
of the nominal parameter value. Therefore, we cannot
Eq. ~14! to correctly predict the next uncontrolled iteration
x when the current value of the adjustable parameter is
l0 but ln5l01dln . We utilize here the fact that after
parameter variation all iterations except the first one se
onto the perturbed map. Assuming that we do not cha
ln during the next iteration, then the uncontrolled iteration
xn is described by the perturbed one-dimensional map,

x85 f ln
~xn!. ~21!

We estimatef ln
(xn) by linearization of the map aroun

the nominal value with the derivative from Eq.~18!,

f ln
~xn!5 f l0

~xn!1dln

] f l

]l
~xn!. ~22!

We employ Eqs.~15!, ~21!, and ~22! to determine the

a-

l
e
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TABLE III. Encoding of the letterC.

Zmax3106 Relative Required Code Bit Bit out Bit Bit in
Initial Desired Actual error~%! k03104 out type in type

13.3982 7.4385 7.4449 0.086 3.5000 0101 1 Arbitrary 1 C-1st
7.4449 13.8439 13.8442 0.003 3.4883 1010 0 Arbitrary 0 C-2nd
13.8442 7.6594 7.7581 1.289 3.4885 0100 1 Arbitrary 0 C-3rd
7.7581 15.9896 16.0028 0.083 3.5423 1001 0 Arbitrary 1 Nonb
16.0028 6.7654 6.7653 20.001 3.5295 0010 1 C-1st 0 C-4th
6.7653 7.6594 7.6599 0.007 3.5189 0100 0 C-2nd 0 C-5th
7.6599 15.5794 15.5873 0.051 3.5180 1001 0 C-3rd 1 Nonbear
15.5873 6.6076 6.6437 0.546 3.5126 0011 1 Nonbear 1 C-6th
6.6437 7.2387 7.2381 20.008 3.4347 0111 0 C-4th 1 C-7th
7.2381 11.1829 11.2101 0.244 3.4517 1111 0 C-5th 1 h-1st
11.2101 11.1829 11.2078 0.222 3.4610 1111 1 Nonbear 1 h-2nd
11.2078 11.4143 11.4311 0.147 3.4749 1110 1 C-6th 0 h-3rd
11.4311 10.5203 10.5085 20.112 3.4857 1101 1 C-7th 1 h-4th
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FIG. 8. Controlled ‘‘chaotic’’ oscillations of BZ system@Eqs.~1!–~4!# containing the message from Table II. The dashed line indica
the decision point. An oscillation maximum above this line corresponds to a ‘‘1’’ bit, and below corresponds to a ‘‘0’’ bit. The first fo
are not part of the message, but of the symbolic code of the randomly chosen initial condition. In accordance with the grammar, a
‘‘00’’ sequence, a noninformation bearing ‘‘1’’ bit has been inserted. The noninformation bearing bits are underlined.
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VII. NUMERICAL EXPERIMENTS

A. Encoding and decoding of a message

The initial parts of controlling chemical oscillations t
encode the message in Table II is listed in Table III. The fi
letter of the message, a ‘‘C,’’ has the binary representatio
1000011. A randomly chosen initial point on the Poinca´
section is shown as the first number in the first column
Table III. Because this number is larger thand (d5
8.637 56 . . .31026) the ‘‘Bit out’’ column displays bit
‘‘1.’’ The first bit of the message is ‘‘1,’’ and shifting in a
‘‘1’’ is permitted by the grammar, since it does not cause
illegal word, ‘‘000.’’ To encode the ‘‘1,’’ we need to contro
the trajectory of the initial condition to the vicinity of th
value shown in the column ‘‘Desired,’’ on the Poincare´ sec-
tion. The required parameter perturbation is estimated u
Eq. ~20!. The resulting value of the parameter is shown in
column ‘‘Required.’’ The next intersection of the perturbe
orbit, on the Poincare´ surface, is shown in the column ‘‘Ac
tual,’’ and the relative error in targeting the desired point
in the ‘‘Relative error’’ column. The 4-bit code correspon
ing to the ‘‘Actual’’ point is shown in ‘‘Code’’ column, a
‘‘0101.’’ The least significant bit of this code contains th
first bit of theASCII message—the ‘‘1’’ bit on the far right
After the third iteration, the code is 0100 and the gramm
requires that we shift in a ‘‘1’’ to prevent the forbidden s
quence. Therefore, the mandatory nonbearing bit ‘‘1’’ is t
geted on the next iteration. The code 1001 results, fr
which there are no grammatical restrictions. The gramm
allows that, from the code 1001, either a ‘‘0’’ or a ‘‘1’’ ca
be shifted in and therefore the fourthASCII bit of the letter
‘‘ C,’’ a ‘‘0’’ bit, is encoded next.

To read the message we have to remember that the
four bits belong to the arbitrary initial state and we igno
them. The first encoded bit can be read after it moves fr
the least significant position to the most significa
position—i.e., there is a delay connected with the buf
length. To shift all the binary bits of the letter ‘‘C’’ through
the buffer, we have to start with encoding of the next lett
the ‘‘h’’ ~see the bottom of Table III!.

Figure 8 shows the controlled time dependence of
variableZ, which after decoding reveals the full messag
‘‘Chaos is useful!’’ The dashed line marks the value of t
critical decision pointd. According to Eq. ~6!, maxima
t
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above the dashed line represent ‘‘1’’ bits, and maxima belo
represent ‘‘0’’ bits. Note that the first four bits do not belong
to a message. To move the last bits of the message to
most significant position, four arbitrary bits were added t
the end of message.

B. Targeting of periodic orbits

In demonstration of how easily we can target an
then stabilize periodic orbits through control of symbol dy
namics, we target a fixed point by encoding the messa
‘‘111111 . . . ,’’ corresponding to the period-1 orbit on
the attractor. To target a period-2 state, we feed the regis
with an alternating two-bit sequence ‘‘01010101 . . . ’’ and we
also target two possible period-3 sequences, i.e
‘‘011011011 . . . ’’ and ‘‘001001001 . . . .’’ In the last case
we actually feed the register with the sequence ‘‘00000 . . . ’’
and the algorithm automatically adds one bit ‘‘1’’ after every
two ‘‘0’’ bits. Figure 9 shows the orbits and time series for
these four examples of the targeting. A period-4 orbit resul

FIG. 9. Stabilization of the periodic orbits by encoding periodic
sequences of bits—phase portraits and time series. Phase portra
targeting ~a! period-one oscillations—encoded sequenc
‘‘111111 . . . ,’’ ~b! period-two oscillations—encoded sequence
‘‘010101 . . . ,’’ ~c! period-three oscillations—encoded sequenc
‘‘001001001001 . . . ,’’ ~d! period-three oscillations—encoded se-
quence ‘‘110110110110. . . ,’’ ~e! time series of the stabilized pe-
riodic orbits; the dashed line indicates the decision point.
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55 6413ENCODING INFORMATION IN CHEMICAL CHAOS BY . . .
from ‘‘110011001100 . . . ’’ or from ‘‘111011101110 . . . .’’
This is quite general and allows any periodic orbit to
targeted.

VIII. CONCLUSION

We demonstrate that chemical oscillations can be stee
through small perturbations,to contain information. The
analogy of the BZ reaction to biological systems implies
possibility that living systems might store information
chaotic oscillations. In terms of practical control issues,
demonstrate that complete control over symbol dynamics
plies complete control over all permissible orbits; target
and stabilization of all periodic orbits and arbitrary aperiod
orbits are straightforward.

In general, to encode information in the dynamical syst
using only small perturbations requires that we respect
grammar of the subshift produced by the free-running c
otic system. A grammar of infinite type is impractical
learn in general. We have demonstrated that due to the
respondence between the physical dynamics and the sy
dynamics, a course-grained parameter control thresh
dlmax.0 only requires that we learn ann-bit approximation
of the grammar.

We describe a method for learning ann-bit approximation
of the grammar in a format which is well suited for encodi
and decoding information. Due to the course-grained con
nature of any real experiment, it is only necessary to obse
the grammar for a grid of initial conditions. Any initial con
dition not on the grid can be stabilized to the grid with
control tolerance. We have presented a format to precalcu
and record a grid of information-bearing targets for comp
and fast access during the on-the-fly control procedure.
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The grammar learning and control techniques we h
developed could be performed for an experimental data
whose dynamics are known only through time-delay emb
ding, or successive maxima. We have described our te
nique to observe short orbit segments for a grid of init
conditions on the attractor. However, we have just imp
mented the more experimentally accessible and equiva
technique of observing asinglelong trajectory which ergodi-
cally wanders through attractor, eventually occupying all
bins which the grammar permits. Our current research
pointed towards demonstrating our techniques in the lab
tory experiment to control the BZ reaction, and to encod
message.

Our grammar learning techniques are more general t
the setting in which we have developed them. Unlike t
work of Hayeset al. @9,10#, which was based in only one
dimension, our technique requires no restrictions on the
mension of the oscillator, requiring minimal modification
our computer programs to learn an arbitrary grammar.
are currently exploring a wide variety of intriguing enginee
ing and interdisciplinary applications of controlling symb
dynamics.
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