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Encoding information in chemical chaos by controlling symbolic dynamics
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In this paper we describe a technique of encoding and then decoding symbol sequences containing infor-
mation into chaotic oscillations of the Belousov-Zhabotinsky reaction. The encoding technique is based on
controlling the chaotic oscillations by applying small parameter perturbations and on learning the grammar of
corresponding symbol dynamics produced by the free-running chaotic system. The use of small parameter
perturbations requires that we respect the grammar of the symbol dynamics which represents the physical
dynamical system. We present a method for learning the grammar of a symbol dynamics in terms of allowed
transitions between the bins defined by the symbol generating partition. The encoding technique can be easily
utilized for targeting and stabilization of any unstable periodic of8i1063-651X97)10904-7

PACS numbe(s): 05.45+b

I. INTRODUCTION Whether or not the link is realized, the existence of the sym-
bol dynamical description implies that controlling a trajec-
A great deal of recent research in applied and theoreticabry of the physical dynamical system is equivalent to con-
dynamical systems has been focused on taking advantage wblling a symbol sequence. Recently, Hayetsal. [9,10]
the fact that a chaotic dynamical system can be controlleddemonstrated, numerically and experimentally, that the con-
The sensitive dependence characteristic of chaos is actualhection between information theory and chaotic systems can
advantageous to building a highly agile control system inbe used to encode a message into a chaaotic electronic circuit
which a small deliberate perturbation can have a large reby controlling the symbol dynamics througimall perturba-
sponse. A chaotic attractor can be considered as an unlimitens.
reservoir of periodic behavior. Ott, Grebogi, and Yorke in- In this paper, we demonstrate, by numerical experiment,
troduced the OGY methdd] to stabilize an unstable period the possibility that information can be encoded into the cha-
orbit embedded in a chaotic attractor. This original ideaotic oscillations of the BZ reaction. There exists a possibility
opened the field of controlling chaos. OGY uses a local linthat biological systems might hold and control information
ear feedback control loop by targeting the stable manifold oflow in the oscillations of their defining dynamical systems.
an unstable fixed point through small parameter variationsHowever, a main technical problem of encoding is learning
Ergodicity causes an arbitrary initial condition to eventuallythe grammar of the corresponding physical dynamical sys-
wander close enough to the fixed point that the tiny paramtem. We present a practical grammar learning algorithm, and
eter variations are sufficient to capture the orbit. When erthen we encode and decode information in the form of binary
godicity does not cause the arbitrary initial condition to wan-sequences. The algorithm is generally applicable to other
der close and fast enough to the unstable fixed point, theystems.
“butterfly effect” allows us to steer trajectories to targets In Sec. Il we present the Gygyi-Field [12] model of the
with only small perturbationf2]; this is called “targeting.”  BZ reaction. In Sec. lll we review the theoretical background
Controlling chaos has provided many exciting interdisci-for a symbol dynamics description of a map in physical co-
plinary applications, including control of lasers, magneto-ordinates, and then we present our technique to learn the
elastic materials, living heart tissue, and interplanetarygrammar in terms of all permitted transitions between the
travel. Of particular relevance to this paper, Peteival.  bins defined by the generating partition. In Sec. IV, given the
[3,4] have experimentally demonstrated the OGY method taules of the grammar, we present the technique of encoding
control chemical chaos. They applied a map-basedand then decoding information in chaotic oscillations by us-
proportional-feedback algorithm to stabilize periodic behav-ing the form of the grammar defined in Sec. Ill. The fact that
ior of the Belousov-Zhabotinsk{BZ) reaction in its chaotic complete control of symbol dynamics implies complete
regime. course-grained control dll possible orbits of the physical
The link between symbol dynamics and a physical dy-dynamical system is noted in Sec. V, which discusses target-
namical system is well establish¢fl] as a descriptive tool. ing. The technical issues concerning how to achieve a re-
The link can be thought of as a change of coordinates imuired small variation of the map on the surface of the sec-
which properties of the dynamics are preserved. The linkion and thus transmit a desired bit is described in Sec. VI. In
also implies a justification for many of the information theo- Sec. VIl we present the numerical experiments in which we
retic tools used in characterizing chaos, including topologicaéncode a short message, and we also target simple unstable
entropy and Markov partition§6—8]. Corresponding to a periodic orbits. We conclude with an assessment of the tech-
physical trajectory, there exists an infinite symbol sequencelique and its potential applications.
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TABLE I. Parameters used in the simulations.
Parameter Value 16105k

Ky 4x 10 dm® mol~2s7!

K, 2 dmf mol~2s71 = AT

ks 3x10° dm® mol~ts7?! :2

K, 55.2 dn?Smol 25571 noL2f

Ks 7x10° dm® mol~ts7! ><E

ke 0.09 dn? mol™*s™? 10 -

k; 0.23 dn? mol~ts™?

a 600/9 08 L

B 8/23

A 0.1 mol dm 3 . . . ) .

B 0.25 mol dn 3 06 08 10 12 x 14 1.6x10°3

H 0.26 mol dnt 3 !

¢ 8.33<10°* mol dm73 FIG. 1. The one-dimensional mdp(x) derived from the three-

Xo 0 mol dm~° dimensional flow on the surface of the section corresponding to the

Zo 0 mol dm™* nominal parameter valug,=3.5xX10"* s~ . The discrete set con-

Vo 0 mol dm~3 sisting of many successive piercings of the section can be used to
approximate an arbitrarf, (x) for a pointx not in the data set by
using a spline fit of the data to represent the map. The technique is

Il. THE MODEL equally accessible to experimental data using delay coordinates.

In this paper we employ the most studied chaotic chemi-
cal system—the BZ reaction in a continuous-flow stirred-[12] showed that the model displays chaos both at high and
tank reactorlCSTR. We use the Gymyi-Field [12] model low flow rates. In this paper we choose the low flow rate
of the BZ reaction: chaotic region to demonstrate the encoding procedure. Low
flow rate chaos is found for flow rates in the vicinity of
ko=3.5x10* s~ for parameters from Table(see the bi-
furcation diagram, Fig. 1 in Refl12]). The same model
[Egs. (1)—(4)] and similar parametric conditions have been
+0.9ky(HA) P (C—2Z) X ksXZ]+Ko(Xo— X), previously used by Petrost al.[3] to demonstrate the OGY
(1)  method of chaos control.
Equations(1)—(4) are stiff ODE's and we use a modified
semi-implicit Runge-Kutta type fourth order method with au-

dz
g ks(HA)'Y(C—Z)X*®~ksXZ— akgVZ— Bk;BZ tomatic step length control for numerical integration.

+ko(Zy—2), 2

X 2 2
Tp =~ kiHXY+ KoAH?Y — 2ksX

lll. LEARNING THE GRAMMAR
dv OF THE SYMBOLIC DYNAMICS
— =2k HXY+kAH2Y + kgX2— akgVZ+ ko (Vo — V),

dt 3 Consider the one-dimensional map
where Xn+1=Fr0X0), (5)
akGZV
Y= KiHX+k,AH?+ Kk, @) derived from the flow by the Poincargection. We use a

special case of Poincasection—maxima o, which can

and the variableX denotes the concentration of HBsOand  be easily determined in experiments. The adjustable param-
Z denotes the concentration of €% V the concentration of eter used for control, the flow rate, is written here as..
bromomalonic acid, and the concentration of Br. The  The map corresponding to the nominal parameter value
concentrations of these species in the inflow stream are dé,=3.5x10"% s~ is shown in Fig. 1. The link between
noted with subscripb. The parameteA represents the con- chaotic evolution of phase space trajectories in &f.and
centration of HBrQ, B is the concentration of malonic acid, orbits of the Bernoulli shift map on symbol space is well
and C is the total concentration of catalyst established5].
C=[Cé"]+[Ce""]. Kinetic parameters are denotedand In the case of a one-hump map, whéréx) has a single
B [12], andk;—kg are rate constants. In our study we allow interior maximum or minimum, a two-character symbol
small variations of the adjustable control parameigr, space, is sufficient to describe the dynamics of E).
which denotes the flow rate. Given a decision poindl, in the range off, , a phase space

The values of the rate constants and fixed parameters uséwjectory, starting at the initial conditiaxy, corresponds to
in our simulations are given in Table |. Gygyi and Field a symbol sequence as follows:
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0 if x;eL, whereL=[Xyn,d] 5 1.0

i7 1 ifx;eR, whereR=(d,Xmad- © Ir(x)l
A symbol sequencéo;};_, may be written 08r
0=00.010203" ", (7) 0.6F

which can be thought of as a pointe 3, where is the
space of all possible two-character, one-sided symbol se- 0.4
guences. Alternatively, the symbol poimt corresponding to
an initial conditionxg, can be thought of as the itinerary of
successive left-right positions of the trajectory relative to the 02
decision pointd.

The Bernoulli shift mags: % — 32, is defined

OO 1 1 1 1 1
06 08 10 12 14 1.6x10°

S(0)=5(0g.010203"+*)=01.0,030," " -. (8) X

As the decimal is shifted to the right one symbol, the left- £, 2. The normr(x)|| as a function ok.

most symbol is forgotten, as a new symbol is brought into

focus. Bringing new symbols into “focus” is equivalent to quences correspond to orbits of the niip We can see that
creating information, which we control by small parameterthe attractor displayed in Fig. 1 folds the interval
perturbationsg. The expression “in focus” describes mea- [x_.. x...] over itself less than exactly twice.

surement accuracy, which is made rigorous by equipping the | earning the grammar of the subshift is a nontrivial task,

symbol spac&. with the following norm: consisting of finding all the forbiddem-bit words, which are
_ n-symbol sequence combinations. In general, the subshift
o] =2 %'_, (9) may not be of finite type; the grammar may not consist of a
I

finite list of n-bit forbidden words for any finite. However,
) , for our purposes, we do not need the full grammar; a finite
The shift map on the full symbol spacg — 3, defines approximation will suffice.
the fullshift. However, given an arbitrary map,, not With a computer, the goal is to learn arbit approxima-
all symbol sequences correspond to the trajectory of aggn to the grammar, foiX e [Xmn:Xma] ON @ grid. The
initial condition X,. Restricting the shift map to a subset grid points need to be fine enough to capture the natural
of 3 consisting of all the itineraries that are generated bypartition generated by the bins, with mean size of order
Eqg. (6) yields thesubshiftX 4 CZX. The location of the 2" (Xma— Xomir) . With this in mind, the bit lengtim should
decision pointd € [ Xyin, Xmax] €ffects the set of admissible be chosen proportionally to the minimum experi-
symbol sequences. For example,difis chosen far to the mental resolutiond\,,,, approximated according t@x
right, symbol sequences tend to consist mostly of “0’'s.” We =Max%epx - x] (9f>\/f7?\|(x0,x) O\ min, Where dx; is the size
choosed as the interior maximum point, which maximizes of the smallestn-bit bin. In practice, the simple rule of

the topological entropy of the resulting subshgj. thumb is that a largen-bit word size causes smaller corre-
Equipped with the topology induced by the symbol spacesponding bin sizes in the phase space, and this requires a
norm, the dynamics of the subshef ¢, q) is semiconjugate  pigher resolution both in measurements of the phase variable
to the dynamics of the may, |, in Eq. (5), restricted to its  x and in parameter control. So, choosingtoo large may
invariant setA C[Xmin,Xmax]. Therefore, trajectories corre- require perturbations or measurements beyond the accuracy
spond to digital symbolic codes, which can be controlled byof the experiment. The payoff is that smaller perturbation is
parameter perturbations. Since we wish to use only smallequired to encode the message for lamgein the numerical
parameter perturbations), the goal is to work within the experiment, described in Sec. VII, we let4 correspond-
existing dynamics, rather than to create new dynamics withng to a total of 2=16 possible words, and we use
large or rude parameter variations. Therefore, we will workN= 1000 evenly spaced grid points.
within the existing grammatical limitations of the subshift  For each grid poiny;, a symbolic itinerary is generated
corresponding tof, , for the chosen nominal parameter according to Eq.(6), creating an explicit correspondence
value . o=r(x), where r:[Xmin.Xmax — . Figure 2 displays the
The one-hump mag, is not uniformly hyperbolic; spe- norm of these itineraries as a functionofising Eq.(9). Due
cifically, the zero slope at the critical poidt chosen as the to the continual refolding of the interval into itself, the func-
maximum, corresponds to nonhyperbolicity fband its or-  tion is not monotonic. It is more useful to use the gray-code
bit. The partition defines bins, correspondingnibit words. ~ ordering according to the following formulas, which can be
The bins are generated by the sequence of inverse imagéund in Cvitanovicet al.[7]. Giveng; from Eq.(6), define
{d,f1(d),f2(d), ... ,f (™ 1(d)}, when these inverses .
exist [6]. When the map is not everywhere two onto one, _
some f'(d) will not exist, corresponding to illegail-bit Ck_(z Ui)(mOdz) (10
words. A one-hump map is Kupka-Smale complete if it is
onto the interval, and for such a map, all possible subseand
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FIG. 4. (a) The fullshift grammanno words are forbiddenon

) ) ) the two symbols “0” and “1”; all permutations of two symbols,
FIG. 3. The monotonic nondecreasingx) function due to the 4 at a time, and all possible Bernoulli-shifts, to 4-bit word accu-

gray-ordered symbolic codes. Note that since no symbolic code cagycy. The only restriction on transitions is that one application of
have a valuey>y(Xma), the gray-ordered value of the maximum he Bernoulli shift map can only shift in a “0” or a “1” in a single

of the map, a hole must be removed from the function. Likewis€jiaration. Thus. there are two arrows into and out of each ndole.

removing all preimages removes a Cantor set. A subshift which is of finite type and can be represented by the
forbidden word “000” requires that all nodes representing words
* with three “0’s” in a row must be canceled. To maintain the closed
vy=0cC.Cp- -+ = 2 c2 k. (11 and invariant property of the subshift, all arrows into and out of
=1 these nodes must also be eliminatég). The resulting subshift has

a smaller directed graph. Some nodes, such as “0.100,” have no

The order ofy is the same as the ordering on the intervalinformation carrying capacity. At this node, only a “1” can be
[Xmin:Xmaxd» Which causes the monotonic nondecreasing nashifted in; s(0.100)=1.001 is the only possibility, because
ture of they(x) function, in Fig. 3. By the natural ordering 5(0-10% 1.000 is a forbidden word. Thus, node “0.100" is
of the gray-codey(X) €[ Ymins Ymad, WHere ymin=¥(Xmin) dead,” and so the bandwidth is not full.

and Yma= ¥(Xmay - Thus the grammar must have limitations
since the functiony(x) does not pass through the origin, as
seen in Fig. 3. Therefore, amybit symbol sequence, corre-
sponding to a gray-codg, such thaty<wy,,,, does not cor-

respond to a trajectory df, . a directed graph in which the 3-bit word “000,” three zeros

We describe here a method of learningrabit approxi- . . . . .
. : in a row, is forbidden. Hence, the forbidden words include
mation to the full grammar. The goal is to catalogue all Of“OOOO,” 40001, and “1000." These are all the 4-bit

the n-bit words, and transitions between these words, which S . ;
are observed among the itineraries of the grid points. Thigvolrdfs’”Wh'ChthLUde gOO. de “0100.” th . hoi
can be decided by a single pass, yes or no, flagging algorithm thotowsdt at rofm”t € r|10 :b't 1 ere“liolz)olﬁcq 0|tce
for eachn-bit word. Then-bit approximation to the grammar :‘n”W ab node can OIO\;V'thn 0l acculrac;y ' fthus hift
can be visualized as a"Zode directed grapksee Fig. 4. oflow by requirement of the grammar. In terms of the shi
- map

Each node represents omebit word, and each node can
have at most two arrows leading into it and two arrows lead- $(0.100 - -)=1.001. - - (12)
ing out of it, corresponding to the choice of shifting in a “0” '
ora “1.” The n-bit approximation to the grammar is equiva- \yritten to 4-bit accuracy. At this node, only the single tran-
lent to a 2'x 2" transition matrixA, where an allowed tran-  gjtion, shifting in a “1,” can occur, and hence there is no
sition from nodej to nodei is denoted byA; j=1, and the  jnformation carrying capacity at the “0100” node.
disallowed transition is denoted by, ;=0. However,A is In contrast, the node “0010” ends with “10” and does
necessarily sparse, and requires at mest@mputer checks not have the possibility of a transition to the forbidden
againSt the grld to deCide if the tl’ansition OCCurs, and at mOStooo” Sequence in one app"cation Of the Sh|ft map. Hence,
a 2xn array for storage. The topological entropy, calculated0010” is an information bearing node; there are two arrows
as the natural logarithm of the largest eigenvalue of the corteading out of “0010,” one to “0100,” and one to “0101.”
responding transition matrij8], is equal toh=In2 for the  |n terms of the shift map,
maximal case representing ambit approximation of the
fullshift grammar. s(0.010 --)=0.100 - - or 0.10% - - (13

For an arbitrary grammar, there will tend to be forbidden
n-bit words. Hence, the corresponding node is forbiddenijs permitted by the grammar. The directed graph, or equiva-
which also erases the arrows both leading into and out of thkently the transition matrix, represents thebit approxima-
node. Thus, in terms of the transition matrix representationtion of the grammar, which consists of all the allowed tran-

erasing theth node requires that thi¢h row and column are
effectively erased fromA. The topological entropy is less
than the maximal value, In2, corresponding to diminished
information carrying capacity. For example, FigbAdepicts
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TABLE II. The encoded message. grid pointy, closest tof, (yi) corresponds to bearing the

opposite of the natural bit—a “1” bit. Sincg, can be found
nearbyy;, asmall parameter perturbatioman be used to
stabilizex, to the grid pointy, nearestf)\o(yk).

C 67 1000011 Alternatively, if the node corresponding 3 is not mes-

ASCII
Character Decimal Binary

h 104 1101000 sage bearingy; must be stabilized to the grid poigf clos-

a 97 1100001 ggt to the natural image, without bearing the desired bit.

0 111 1101111 Nonbearing transitions through the directed graph, must be

s 115 1110011 \yade whenever a nonbearing node is visited. A nonbearing

) 32 0100000 hnde s defined as a node which has only one leaving arrow,

! 105 1101001 corresponding to no choice, and therefore no information

s 115 1110011 carrying capacity. The larger the number of nonbearing
32 0100000  podes, the slower the transmission rate, often called a small

u 117 1110101 pandwidth. The transmission rate, or information carrying

s 115 1110011  capacity of the directed graph, is measured by the topologi-

e 101 1100101 cal entropy function.

f 102 1100110 Each grid pointy; has one fixed code, mapped to the

u 117 1110101 n-bit coder (y;), and therefore there is a closgstsuch that

I 108 1101100 r(fxo(yi)) has a “0” as the least significant digit, if shifting

! 33 0100001 in a “0” from node r(y;) is permitted by the grammar.

Likewise, there is a closegt, such thar(fxo(yk)) hasa“1”

as the least significant digit, if permitted by the grammar.

; T i Thus, it is possible to preprocess the grid. Before any control
grammar, there exists a finitesuch that all forbidden words js qone experimentally, we precalculate and record the clos-
are considered. est point to grid pointy; which shifts in a “0,” and the

At this point, we have access to all possible transitionsy|ysest point which shifts in a “1.” Thus the grammar at

the grammar is recorded as the transition matrix in compactach grid point can be prerecorded, and all the best targets of
form by the 2<n array of yesses or nos. We also have any| he grid points can be stored in a<d array, for anN

itinerary at each grid point; . Thus, we know the grammar, oint grid. A huge advantage of prerecording is the speed
and we know the code at each grid point. We still need tng simplicity for “on-the-fly control” of an experimental

learn how to encode a desired bit at each grid point. orbit of X,; this only requires association &f, at timet, to
its nearest grid poiny; , and then targeting;'s prerecorded

sitions between all then-bit words. For a finite-type

IV. ENCODING AND DECODING A MESSAGE target on the grid which Fransmits the desired bit, fat a mini-
mal energy cost. All pertinent data can be stored inxa\3
A. Encoding array, where the entries of the array can be arranged as fol-
lows.

The directed graph represents théit grammar of the ; ) .
grid points in which a digital message can be encoded ac- (1) The first columny; ;, records the code and/or itinerary
cording to the following scheme. Suppose we wish to sen®f the grid pointr(y;). Note that forbiddem-bit words will
the message from Table II. Note the distinction between th&@€Ver appear on this list. _ ,
n-bit register(node and the 7-bitascil codes. The message, (i) The second columry; », contains the grid number of
in Ascll, is coded bit by bit into the dynamics as the transi-the closest grid poiny/ to the natural imagé, (y;), which
tions from information bearing nodes. shifts in a zeroy; represents the target whose cadg;)

Starting at an arbitrary initial conditioxg, a simple has a “0” as the least significant digit and it is the grid point
search locates the nearest grid paint We associate ta,  which shifts in the “0,” while requiring the smallest param-
the noder (y;) [which we know as the course grainaebit  eter perturbation. If shifting a “0” into then-bit window is
itinerary, r:[Xmin:Xmaxl— 2 according to Eq.(6)] corre- not allowed by the grammar, we record-al in this posi-
sponding toy;, along with the node’s permitted transitions. tion. It is necessary to transmit a nonmessage bearing buffer
Throughout the on-the-fly control experiment, the orbit ofbit “1.”

Xo Will be stabilized to grid points, for insurance of knowl- (i) The third columny; 5, contains the grid number of
edge of the outcomes. Y. the closest grid point to the natural imag%(yj) which

Examining the message in Table II. the first message bit ighjfts in a 1. If shifting a “1” into then-bit window is not
a “1.” If the node corresponding tg; is information bear-  5jjowed, we record a1 in this position. It is necessary to
ing, then the “1” can be encoded. In this case, if the code ofansmit a nonmessage bearing “0.”
t_he natHrzil image _oj'j t_:ontains in_the Ie_ast significa_nt posi-  \Whenever botty; >0 andy; 5>0, indicatingr (y;) is a
tion a “1" bit, which is the desired bit for encoding the message bearing node, the desired bit is transmitted, and on
message, theny; should be stabilized to its natural the next iterate, the next bit of the message is considered. If
image—to the grid poiny; closest tof, (y;). If the natural . <0 ory, ;<0, then a nonmessage bearing (ait‘buffer
image ofy; corresponds to encoding a “0” bit, then by bit”) is sent, and on the next iterate, the same message bit is
construction there exists a nearby grid paiptsuch that the again attempted for transmission. It never happens that both
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Yj2<0 andy; 5<0; this indicates a forbiddem-bit word and  can cause misidentification of location gf relative tod
as mentioned above such a word never appears on the list @fhen|x;—d| is small[11]. A “0” when x,<d may be in-
observedorbits. terpreted as “1” when a small error causes the reading
x;>d. If noise volumedx,, is possible, then it is necessary to
B. Decoding avoid targeting the interval=[d— &x,,d+ 8x,] and all pre-
. . i -1 -2 i g
There are two alternative methods by which the controlledterates of, {I,f~*(1),f~(1), .. .}, which defines the holes
time-series signal can be translated back into the origina®f @ Cantor set that are subtracted from the attrastoNote
message. Both techniques require translation of the timeat as the noise gap is increased, the measure of the Cantor
series into the sequence ofbit nodes visited, that is, the set decreases. Also, the restrictions on the grammar increase,
path through the directed graph. The first method requireand therefore the bandwidth decreagk4. We did not for-
that the receiver also has access to all the tools used by tmeally remove such a Cantor set in this work.
encoder and/or controller. Given the full grid of poigtsand We use a pragmatic technique to prevent errors in control
their corresponding symbolic coddy;), the experimental from effecting the message. Interpreting the three-
time series can be translated to the sequenaeluit nodes  dimensional flow as a one-dimensional map causes a small
visited, by associating the nearest grid poiptdo the time  error in predicted control response, which we discuss in the

seriesx; at each timet. o . next section. If a small error causes which was targeted at
The second method is related to the first in that we Intery., whose code is(y;:), to land aty, andr(y)#r(y/), then

pret transitions through the directed graph, except we do NGhere is a codin ’ ’
. g i g error. ijj is near the boundaryS' of the
require that the decoder has access to the origihgoint "~ ° - seB ={z:r(2)=r(y/)}, the set of all points with

grid approximating the functiom(x). The alternative and h d he desired h I
more realistic idea is to read the itinerary directly from thef[ e same code as the desired target, then even a small target-

controlled time series, , by comparison of; to the decision g error will be prone to coding errors. The simple fix to this
pointd at each time, according to Eq(6). This information problem IS to aqu targeting pomtg near the bqundques of
is easily translated into the sequencenebit nodes visited C€OU€ regions. Simply put, we define a buffering size of
by considering a sliding-bit block through the long itiner- M-grid points, and we avoid targeting a point which is less
ary sequence correspondingxa thanm points from the boundary of a cc_>de region. That is,
At this point, interpretation of the path through the di- W& add the following caveat when forming the prerecorded

rected graph into the digital message is the same for botR <N list of targetsy; ; lists the _grlq‘m’J’mber of the optimal
techniques above. We must strip off the “buffer bits” which €Nergy target, frory; , to transmit a “0.” It y; , is more than -
were added during encryption. Given knowledge of permis!™ grid points from the b_oundary of_|ts _code region, the_n it is
sible transitions through the"ode directed graph, the se- @lréady noise error resistant. Butyif; is less tharm grid
quence of nodes actually visited can be translated into thBOINts from the boundary, then we store instead the noise-
encoded message by reading the transitionly from the ~resistant and nearby point which is exactly grid points
information bearing nodeslust as was the case during en-from the boundary, in the array locatign .. We similarly
cryption, the decoder reads the choice of shifting in a “0” or alter the third column of the array; s, of optimal energy

a “1” in terms of the actual transitions away from targets which shift in a “1,” by adding am-grid buffer
information-bearing nodes. However, the transitions away€gion and therefore error resistance.

from nonbearing nodes must be ignored, effectively stripping

the buffer bits that the encoder was required to send. V. TARGETING

Encoding a message requires the insertion of a buffer Knowledge of the symbol dynamics of a dynamical sys-

“1" every time after two "0’s” have occurred. So to send tems, to am-bit accuracy, is equivalent to a complete course
the message “0000,” it is necessary to send the bits ’ Y, d P

“001001” to avoid the illegal three bit word “000” ever grained knowlgdge of all possible orbit;. Controlling _the
occurring in the 4-bit sliding block window. Encryption with symbol dynamics can also be used to quickly steer orbits to

buffer bits, for an arbitrary-bit grammar, occurs automati- desired periodic states while using only small perturbations.

cally when encoding by use of the directed graph method-.rargletlng IS surprlglngly straightforward, given complete
knowledge of then-bit grammar.

The interpretation of the path through the directed graph de- Suppose we wish to target a fixed point. This can be
cryption described above automatically strips the buffer bits, = pp : s Y ) point. )
hieved by identifying a legal repeating sequence of bits.

The method has the advantage that interpreting the gramm ; . : : )

. : : or example, we continue with the 3-bit example in which
is all done automatically on the computer. This saves a Iargeooo,, i forbidden. In this case. a legal repeating sequence
part of the difficulty found if 9] of interpreting the grammar “111111 . " corre.s onds to thé erigd—l o?bitongthe?:lttrac-
of the dynamical system; it is never necessary to try totor In th.ié'exam Iep it is not oF;sibIe to target a periodic
“manually” deduce any fundamental word restrictiofssich L pb not p hat th " ,g,, anp

as forbidding “000") and then to manually insert and then point OQOOO ey restriction that three “0's™ in arow
strip buffer bits, on a case by case basis, to prevent the fof € forblddgn. F|gur(3 1 shows that the functiqiix) 'nter'
bidden words. The list ofi-bit nodes and their allowed tran- SSCtS the diagonak=x;., only atx>d and there is no

o . . . . intersection forx<<d.
itions i fficient for en ingn ing. interse . . . . .
sitions is sufficient for encodingnd decoding Similarly, if we wish to target a period-2 state, it is suffi-

C. Noise cient to feed any legal alternating two bit sequence, i.e.,
' “01010101 ....” Legal period-3 three sequences include

The encoding method can be made robust to noise and010010Ql ...,” “110110110...," etc.
modeling errors. Errors to the time-series due to noise, Note that we never hit a periodic state exactly using
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n-bit word accuracy. Rather, we produce an orbit which is
stabilized around the periodic orbit by confining it to the bins

whose sizes are specified by thebit word accuracy. This 1.6x107F
can be made as accurate as justified by the minimum pos-
sible experimental parameter perturbations. This limitation is 14l

not unigue to the symbol dynamics method of targeting, but

limits all methods of course-grained control. An analogy is a ><£ ok
person’s ability to stabilize a stick in the upwards vertical ’
position. The limitation here is a person’s hand-eye reaction
time, and minimal hand movement tolerances. LoF
VI. CONTROL PERTURBATIONS 081

In this section, we discuss the calculation of parameter ! | . . -
variations based purely on the assumption of a one- 0.6 08 10 X1-2 L4 Lod0
dimensional map. Then we include the complications which a

arise due to the true three-dimensional nature of the phase
space.

In terms of the map based description, given a desire o s
displacemen®x,,.;, the parameter variatiod\ can be cal-  o+e(*) CO”_efted for the parameter variatien=1.4x10"" s—1,
culated by linearization of the map, . Suppose the current, Ag=3.5x107" s—1.
on-the-fly experimental value for phase point on the surface
of sections isx. We have determined by above consider-ues off, .. at the grid pointx=8.006 489 8% 10" and the
ations that we need to stabilize the iteratexofo the grid  solid line represents the least squares fit.

FIG. 5. A spline fit model of the map for the nominal parameter
Halue fy,(X) as in Fig. 1, and a second spline fit of the map

pointy; . The uncontrolled iteration of is Unfortunately, for our system, the derivative from
Eqg. (18) cannot be used directly in EL7) to estimate the
x’=fxo(x). (14 required parameter perturbation. Equatidd) requires that
the response to parameter variations occurs completely along
Therefore, the desired displacement is the surface of the section. In fact, the set of three ODE’s
[Egs. (1)—(4)], reduced to a one-dimensional map by the
HMuant=Y;— X', (15 Poincaremethod, displays transient effects of parameter per-

turbations. Integration reveals that the very next intersection

from which we can make the following linearization of the with the Poincaresurface after a parameter perturbation does
map: not correspond to a perturbed one-dimensional map, but all
the following intersections settle onto the perturbed map.

To calculate the true response, on the Poincandace,
we need to calculate the partial derivatives/ o\ at every
point of the nominal one-dimensional map by integrating
Egs. (1)—(4) to find the very next Poincarsection for the
slightly perturbed parameter valugg+ e. Let fi0+e(x) be

af,

N ON. (16)

(Mg +X)

OXwant™

Solving for the required parameter perturbation yields

5xwant
ON=—. 1
afy @n 1.75%10°5
x| o
Parameter control requires knowledge of how the map 170

varies with respect to parameter variations. To calculate the
one-dimensional map changes for a slightly perturbed pa-
rameter value at least two separate data sets are required: one
at the nominal parameter value,, and one for a slightly
perturbed parameter valie=\q+ €. Using the difference
guotient approximation,

i+ (X, f;»u+ ¢X)

afy Frgre(¥) =5 (%)

N L R — (18) {

1 2x10°°

Mol

the derivative can be calculated by comparison of the two
spline fit mapgsee Fig. 5. We employ several both negative
and positive values of and we use the least squares method FIG. 6. Dependence of,.. and fi,, on e at grid point
at every grid pointy; to approximate the derivative x=8.006489 8% 10 % M. Squares and the solid line represent
af,1a\. Squares in Fig. 6 correspond to the calculated val{, , . ; dots and the dashed line represéht . .
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1.0 6X
5)\ _ 1Waﬂt
It

K(X)

(20

I
o
T

Another complication, as noted i3], arises from the
false assumption that system dependence on the parameter is
given byx,, 1=f(x,,\,), which for a fixed parameter value
gives rise to the one-dimensional map. In fact, the depen-
dence we observe g, 1=f(Xy, Ny, An—1), due to rapid
contraction to a new perturbed one-dimensional map, but not

of/oh, of'/oA

o
B
T

02F fast enough during frequent parameter variations. Due to the
three-dimensional nature of the flow, Eq44), (15), and
/ - (20) give the correct estimate for the required parameter per-
0.0 . . ;
06 08 10 12 14  16x107° turbation only when the adjustable parameter is changed

X from g to N g+ S\.

The control of symbol dynamics requires slight changes
to the adjustable parameter eteryiteration and therefore
there is no time to settle back onto the one-dimensional map
&f the nominal parameter value. Therefore, we cannot use

FIG. 7. Comparison betweeif, /N andafi/a)\. The approxi-
mate partial derivative)f, /d\ calculated by Eq(18), under the
assumption of a truly one-dimensional map, and responses to p

rameter variations occur entirely on the Poincsueface. The true Eq. (14) to correctly predict the next uncontrolled iteration of

l . . . . . .
a2 Shoy e e o e he curent value o the adiusable parametr s o
q ’ gty p P ’ Ao but N,=Np+N,,. We utilize here the fact that after a

conditions on the original map until the next surface piercing. The t iati Il iterati t the first tl
nominal parameter valug,= 3.5X 107451 parameter variation all iterations excep e Tirst one sette

onto the perturbed map. Assuming that we do not change
N\ during the next iteration, then the uncontrolled iteration of

the very next Poincarsection after a parameter variation by X, is described by the perturbed one-dimensional map,

€. Then the approximation aff/dx(x) is

X' =1\ (Xn). (21
atl £ 00—y (%)
ON o0 T T (19 We estimatef, (x,) by linearization of the map around
the nominal value with the derivative from E@.8),

We also employ several negative and positive values

of e and we use a least squares fit at each grid pgint fo (Xy)="Fy (X)) + O\

to approximate the derivativefi/dx. Figure 6 also dis- " 0

plays the dependence df_ . on e at the grid pointx=

8.006 489 8% 10 © and Fig. 7 contrasts the difference be- We employ Egs.(15), (21), and (22) to determine the

tween the partial derivativesf/dx andafl/ox. desired displacement and Eq%9) and (20) to calculate the
The required parameter perturbation is therefore equal toequired perturbation at every iteration.

af,

" (o). @2

TABLE Ill. Encoding of the letterC.

Zmax< 10° Relative Required Code Bit Bit out Bit Bit in
Initial Desired Actual errof%) kox 10* out type in type
13.3982 7.4385 7.4449 0.086 3.5000 0101 1 Arbitrary 1 C-1st
7.4449 13.8439 13.8442 0.003 3.4883 1010 0 Arbitrary 0 C-2nd
13.8442 7.6594 7.7581 1.289 3.4885 0100 1 Arbitrary 0 C-3rd
7.7581 15.9896 16.0028 0.083 3.5423 1001 0 Arbitrary 1 Nonbear
16.0028 6.7654 6.7653 —0.001 3.5295 0010 1 C-1st 0 C-4th
6.7653 7.6594 7.6599 0.007 3.5189 0100 0 C-2nd 0 C-5th
7.6599 15.5794 15.5873 0.051 3.5180 1001 0 C-3rd 1 Nonbear
15.5873 6.6076 6.6437 0.546 3.5126 0011 1 Nonbear 1 C-6th
6.6437 7.2387 7.2381 —0.008 3.4347 0111 0 C-4th 1 C-7th
7.2381 11.1829 11.2101 0.244 3.4517 1111 0 C-5th 1 h-1st
11.2101 11.1829 11.2078 0.222 3.4610 1111 1 Nonbear 1 h-2nd
11.2078 11.4143 11.4311 0.147 3.4749 1110 1 C-6th 0 h-3rd
11.4311 10.5203 10.5085 —-0.112 3.4857 1101 1 C-7th 1 h-4th




6412 ERIK M. BOLLT AND MILOS DOLNIK 55

ol gl gl ol li
i ALAMHLL sl AMMMMH i

FIG. 8. Controlled “chaotic” oscillations of BZ systefiegs.(1)—(4)] containing the message from Table Il. The dashed line indicates
the decision point. An oscillation maximum above this line corresponds to a “1” bit, and below corresponds to a “0” bit. The first four bits
are not part of the message, but of the symbolic code of the randomly chosen initial condition. In accordance with the grammar, after every
“00” sequence, a noninformation bearing “1” bit has been inserted. The noninformation bearing bits are underlined.

VIl. NUMERICAL EXPERIMENTS above the dashed line represent “1” bits, and maxima below
represent “0” bits. Note that the first four bits do not belong
to a message. To move the last bits of the message to the

The initial parts of controlling chemical oscillations t0 most significant position, four arbitrary bits were added to
encode the message in Table Il is listed in Table Ill. The firsthe end of message.

letter of the message, aC.” has the binary representation
1000011. A randomly chosen initial point on the Poincare
section is shown as the first number in the first column of _ _
Table Ill. Because this number is larger thah (d= In demonstration of how easily we can target and
8.637 % ...x10 % the “Bit out’ column displays bit then'stablllze periodic 'orblts through contrql of symbol dy-
“1.” The first bit of the message is “1,” and shifting in a Namics, we target a fixed point by encoding the message
“1” is permitted by the grammar, since it does not cause the 111111 ...," corresponding to the period-1 orbit on
illegal word, “000.” To encode the “1,” we need to control th.e attractor. To target a period-2 state, we feed the register
the trajectory of the initial condition to the vicinity of the With an alternating two-bit sequence “0101010." and we
value shown in the column “Desired,” on the Poincaec- @S0 target two possible period-3 sequences, i.e.,
tion. The required parameter perturbation is estimated usingd11011011 ... " and “0010010QL .. .." In the last case
Eq. (20). The resulting value of the parameter is shown in theVe actually feed the register with the sequence “aDQ0”
column “Required.” The next intersection of the perturbed @nd the algorithm automatically adds one bit “1" after every
orbit, on the Poincarsurface, is shown in the column “Ac- two “0” bits. Figure 9 shows the orbits and time series for
tual,” and the relative error in targeting the desired point isthese four examples of the targeting. A period-4 orbit results
in the “Relative error” column. The 4-bit code correspond-
ing to the “Actual” point is shown in “Code” column, a -
“0101.” The least significant bit of this code contains the -
first bit of the Ascii message—the “1” bit on the far right. .
After the third iteration, the code is 0100 and the grammail os Da b c d
requires that we shift in a “1” to prevent the forbidden se- I A T e A O B e
guence. Therefore, the mandatory nonbearing bit “1” is tar- 111111... [ 01010L... | 00100L... 011011... €
geted on the next iteration. The code 1001 results, fron
which there are no grammatical restrictions. The gramma
allows that, from the code 1001, either a “0” or a “1” can ‘
be shifted in and therefore the fourtisci bit of the letter H | H J ‘ ‘ ‘ | } ‘ ‘ ‘
“C,” a “0” bit, is encoded next. MBI LT -t ]
To read the message we have to remember that the fir H' ”'“’l ““““m ‘ A‘ l MN m l'““' m
four bits belong to the arbitrary initial state and we ignore 0.5 i ML AV
them. The first encoded bit can be read after it moves fron 0 2000 time (s) 4000
the least significant position to the most significant

pOSItIOﬂ—I.e.,' there is .a delay connected W',t,h the buffer FIG. 9. Stabilization of the periodic orbits by encoding periodic
length. To shift all the binary t_"ts of the_ letteiC” through sequences of bits—phase portraits and time series. Phase portrait of
the buffer, we have to start with encoding of the next letterargeting (a) period-one  oscillations—encoded ~ sequence
the “h” (see the bottom of Table |l

A. Encoding and decoding of a message

B. Targeting of periodic orbits

Z (mol/dnd)
s

_
)
X
fal
<
S

1.04

Z (mol/dn?)

N

) : “111111...," (b) period-two oscillations—encoded sequence
Figure 8 shows the controlled time dependence of thep10101...,” (c) period-three oscillations—encoded sequence
variable Z, which after decoding reveals the full message,“001001001001...," (d) period-three oscillations—encoded se-

“Chaos is useful!” The dashed line marks the value of thequence “110110110110..,” (e) time series of the stabilized pe-
critical decision pointd. According to Eq.(6), maxima riodic orbits; the dashed line indicates the decision point.
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from “11001100110..." or from “11101110110....” The grammar learning and control techniques we have
This is quite general and allows any periodic orbit to bedeveloped could be performed for an experimental data set
targeted. whose dynamics are known only through time-delay embed-
ding, or successive maxima. We have described our tech-

VIIl. CONCLUSION nique to observe short orbit segments for a grid of initial

] o conditions on the attractor. However, we have just imple-

We demonstrate that chemical oscillations can be steereghented the more experimentally accessible and equivalent
through small perturbations,to contain information. The  technique of observing singlelong trajectory which ergodi-
analogy of the BZ reaction to biological systems implies thecg)ly wanders through attractor, eventually occupying all the
possibility that living systems might store information in pins which the grammar permits. Our current research is
chaotic oscillations. In terms of practical control issues, Wehointed towards demonstrating our techniques in the labora-
demonstrate that complete control over symbol dynamics imtory experiment to control the BZ reaction, and to encode a
plies complete control over all permissible orbits; targetingmessage.
and stabilization of all periodic orbits and arbitrary aperiodic gy grammar learning techniques are more general than
orbits are straightforward. the setting in which we have developed them. Unlike the

In general, to encode information in the dynamical systemyork of Hayeset al. [9,10], which was based in only one
using only small perturbations requires that we respect thgimension, our technique requires no restrictions on the di-
grammar of the subshift produced by the free-running chamension of the oscillator, requiring minimal modification to
ofic system. A grammar of infinite type is impractical to g computer programs to learn an arbitrary grammar. We
learn in general. We have demonstrated that due to the cogye currently exploring a wide variety of intriguing engineer-

respondence between the physical dynamics and the symbply and interdisciplinary applications of controlling symbol
dynamics, a course-grained parameter control thresholgynamics.

S\ max> 0 only requires that we learn ambit approximation
of the grammar.

We describe a method for Ie_:arn_lng arbit approximation ACKNOWLEDGMENTS
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